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A mathematical model for the kinetics of a chemical
reaction that occurs via a nonlinear multistep mecha-
nism is usually a set of first-order differential equations.
The exact analytical solution to such equations is usu-
ally impossible to find. Even numerical integration
often comes across difficulties that are due to the high
dimensionality of the system and the stiffness of the set
of differential equations. The latter can be due to a sig-
nificant scatter of the rate constants of steps. Therefore,
an important task is rearranging the model to exclude or
reduce the effect of the model properties mentioned
above. One of the methods to reduce the dimensionality
of the model is to use the property of time separation
[1–4]. This property consists in the fact that the whole
time interval can be divided into subintervals, and only
a part of the complex mechanism is operative at each of
them. One of such methods is the method of pseudo-
steady-state concentrations [1, 2]. The method pro-
posed by Spivak and co-authors [3, 4] enables finding
the number and lengths of characteristic intervals for
any specific mechanism and the respective parts of the
mechanism that determine the main properties of the
system behavior at each interval. The goal of this work
is to refine the method for reducing the set of differen-
tial equations and extend its applicability range.

The mathematical model of a chemical reaction that
occurs via the steps

 

(I)

 

(reversible steps are written as two nonreversible ones)
have the following form
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where the rates of steps 
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 are determined according to
the mass action law:
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with the rate parameters (the rate constants of steps) 
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the concentrations 
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 of species 
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, and the stoichiomet-

ric coefficients . Let us assume that the number of
atoms of each type is conserved. Since each species is
included in at least one conservation law for atoms, the
concentrations of all species have some constant upper
limit 
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. The main idea for the improvement of the
method for reducing set (1) is to preserve the conserva-
tion laws. This idea is based on the following reduc-
tion rule: the system changes only when the rate of
any step (2) reaches the significance threshold value 

 

ε

 

.
If the rate increases and reaches this value, then the cor-
responding step is included in the mechanism. If the
rate decreases to the threshold value, then the corre-
sponding step is excluded. When this reduction method
is used, set (1) of differential equations remains chem-
ically sensible at each period of time, since it corre-
sponds to the initial mechanism with several steps
excluded. The solutions to the set are constrained
because the conservation laws are determined by the
list of species and their chemical formulas and do not
change if steps are removed or added.

Note that the reduction method as it was initially
formulated [3, 4] contained another reduction rule. It
was based on the comparison of the monomials of the
polynomial set of differential equations (1) rather than
reaction rates with the significance threshold value.
However, when monomials are excluded or returned to
the system, the chemical properties of system (1) are
lost. This may result in a substantial change in the prop-
erties of the reduced system compared to the initial
model. For instance, reaction X  2Y is character-
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Abstract

 

—The method for reducing differential equations, which is applicable to any kinetic model, is
improved. The improvement consists in taking into account only those steps of the process whose rates are
higher than a certain value of a significance threshold at each moment of time. The error due to the approxima-
tion of the initial model by the reduced solution is estimated. It is shown that, at a sufficiently low value of the
significance threshold, this error can be as small as desired. Examples are given to illustrate the effectiveness
of using the refined reduction method.



 

KINETICS AND CATALYSIS

 

      

 

Vol. 43

 

      

 

No. 1

 

      

 

2002

 

IMPROVEMENT OF THE METHOD FOR THE REDUCTION 35

 

ized by a monotonic decrease in the concentration of
reactant X to zero and an increase in the concentration
of product Y to a certain value. The mathematical
model of this reaction takes the following form:

 

(3)

 

For any positive value of the significance threshold 

 

ε

 

and the initial concentration of X, which meets the con-

dition 

 

x

 

0

 

 > 

 

, the reduction method in its initial formu-

lation results in an initial decrease in the concentration
of 

 

x

 

 to the value 

 

x

 

1

 

 = 
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. The monomial 

 

kx

 

 is excluded
since it decreases and reaches the threshold value. The
monomial 

 

2

 

kx

 

 remains significant at the point of
switching to a reduced system. After switching, sys-
tem (3) transforms to

 

(4)

 

Because the concentration of species X stops changing,
monomials 

 

kx

 

 and 

 

2

 

kx

 

 do not change and there are no
more switches. According to Eqs. (4), the concentration
of Y infinitely increases in contrast to the real situation.
The application of the improved reduction method to
model (3) results in the simultaneous elimination of
both monomials at the point of switching (because the
corresponding step is removed), and both concentra-
tions further remain constant. Therefore, the refined
method preserves the chemical sense of the model.
Note also that the deviation of the steady-state value
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 of the concentration of species X from zero
decreases with a decrease in the significance threshold
value.

Let us estimate the accuracy of the improved reduc-
tion method or the error due to the replacement of the
solution vector 
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 of the initial system by the solution
vector 
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i
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 of the reduced system depending on the sig-
nificance threshold value 

 

ε

 

. Suppose 

 

t

 

0
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 are the
moments when the list of active steps changes (call
them switches). In the initial moment 

 

t

 

0

 

 this list can also
be changed (if one or several rates are lower than the
threshold value).

The vectors of solutions to the initial and reduced sys-
tems satisfy the sets of polynomial equations 
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 corresponds to significant steps (that is,
steps with rates higher than the significance threshold
values at the interval 

 

t

 

m
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) and steps that acquire
significance at 

 

t

 

 = 

 

t

 

m

 

 – 1

 

. Changes in the error 

 

∆

 

 =

 

 due to the replacement of the exact solu-
tion by the reduced solution is determined by the
expression
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where the sum over J– corresponds to steps that are
insignificant at the interval tm – 1 ≤ t < tm and steps that
lose their significance at t = tm – 1. If M is the highest
molecularity of steps in the mechanism and K is the

maximal of all rate constants, then the derivative 

has an upper limit equal to L = KMRM – 1 at |xi| ≤ R. Then,
using the mean value theorem wj(x) – wj(y) =

(ξ)(xi – yi), where ξ is some point on the axis

that connects points x and y, the values of wj(y) in the
sum over J– are not greater than the significance thresh-
old value wj(y) ≤ ε. Taking this into account, the error ∆
can be   estimated by the differential inequality ∆' ≤
nLMS∆ + MSε. The solution to this inequality gives
us the following estimate of ∆:

(5)

Because ∆(t0) = 0, the use of expression (5) recurrently
leads us to the estimate of ∆ at any moment of time
t ≥ t0:

(6)

Thus, the error that appears when one replaces the exact
system by a reduced one is estimated by a value that is
a linear function of the significance threshold ε. There-
fore, it can be made as small as desired by choosing an
appropriate value of ε although the factor in this linear
function can be rather high in real examples. Obvi-
ously, further analysis would provide a more exact esti-
mate of the factor.

Let us consider examples that illustrate the
improved reduction method for specific reactions. The
five-step irreversible mechanism

(II)

is characterized by an almost monotonic function of the
concentration on time for the following values of the
rate constants k1 = 1, k2 = 0.5, k3 = 2, k4 = 4, and k5 =
3 s–1 and the initial conditions x1(0) = x2(0) = x3(0) =
x4(0) = 0, and x5(0) = 1 (Fig. 1a). Figure 1b illustrates
the dependence of the concentration x1(t) on time cal-
culated for ε = 0.01. The same figure provides informa-
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tion on the reduction process in the form of the func-
tions of the rates of steps from scheme (II) on time. The
intervals of insignificance are given zero values,
whereas the significance intervals of steps 1–5 are
marked by values 0.10, 0.15, 0.20, 0.25, and 0.30,
respectively. As can be seen from Fig. 1b, these steps
start to work with some delay one after another. This is
explained by the fact that scheme (II) represent a chain
mechanism. The difference between the exact and
reduced values of x1(t) changes from –0.00004 to
0.00019 at the interval from 0 to 10 s; that is, it is rather
small.

The four-step reversible mechanism

(III)

is characterized by the damping oscillation dependence
of the concentrations on time at the values of rate con-
stants ki = 0.25 s–1 and k–i = 0.01 s–1 and the initial con-
ditions x1(0) = x2(0) = x3(0) = 0 and x4(0) = 1 (Fig. 2a).
Figure 2b shows a plot of x1(t) vs. t for the reduced sys-
tem with ε = 0.001, and the intervals of significance for
the steps 1, –1, …, 4, and –4 characterized by the values

1. X4 X1, 2. X1 X2, 3. X2 X3,= = =

4. X3 X4=

0.05, 0.10, …, 0.35, and 0.40, respectively. The reverse
steps in mechanism (III) start to work with a significant
delay. This is explained by the small values of rate con-
stants. The difference of the exact and reduced solu-
tions x1(t) in the interval from 0 to 20 s changes from
−0.00015 to 0.00070.

The three-step scheme

(IV)

is characterized by the oscillatory regime when the
rate constants take the values k1 = 2.89, k–1 = 0.01,
k2 = 0.034, k–2 = 0.1, and k3 = 2000 s–1 and when the
initial conditions are x1(0) = 0.2, x2(0) = 0.8, x3(0) = 0
(Fig. 3a). Figure 3b shows the curve x1(t ) for the
reduced system when the significance threshold is
ε = 0.001. The significance intervals of steps 1, −1,
2, −2, and 3 are denoted by the values 0.1, 0.2, 0.3,
0.4, and 0.5. The second step in the reverse direction
is characterized by the rate k–2x2 and has insignifi-
cance intervals not only during the initial period but
during the whole course of the reaction. This is
explained by the fact that a limit cycle, which
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Fig. 1. Plots of xi(t ) and wi(t ) vs. time (i = 1, …, 5) for scheme (II): (a) xi(t ) is calculated using the exact model; (b) (1') xi(t )
and (1–5) wi(t ) are calculated using the reduction method.

Fig. 2. Plots of xi(t ) and w±i(t ) vs. time (i = 1, …, 4) for scheme (III): (a) xi(t ) is calculated using the exact model; (b) (1')
xi(t ), (1–4) wi(t ), and (5–8) w–i(t ) are calculated using the reduction method.
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appears in this reaction, is characterized by the low
values of x2, and there is an insignificance interval of
the second step in the reverse direction during each
period of oscillations. The difference between the
exact and reduced solutions x1(t ) at the interval from
0 to 40 s is between –0.0078 and 0.0522 and is
higher than the error calculated for mechanisms (II)
and (III). This is explained by the fact that scheme
(IV) is characterized by a more complex nonstation-
ary behavior than the above schemes. However,
analysis of inequality (6) shows that this error can
be decreased to any desired level by changing the
significance threshold.
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Fig. 3. Plots of xi(t ) and w±i(t ) vs. time (i = 1, 2, 3) for scheme (IV): (a) xi(t ) is calculated using the exact model; (b) (1') xi(t ),
(1–3) wi(t ), and w–i(t ) (4, 5) are calculated using the reduction method.


