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Abstract—The method for reducing differential equations, which is applicable to any kinetic model, is
improved. The improvement consists in taking into account only those steps of the process whose rates are
higher than a certain value of a significance threshold at each moment of time. The error due to the approxima-
tion of theinitial model by the reduced solution is estimated. It is shown that, at a sufficiently low value of the
significance threshold, this error can be as small as desired. Examples are given to illustrate the effectiveness

of using the refined reduction method.

A mathematical model for the kinetics of achemical
reaction that occurs via a nonlinear multistep mecha
nismisusually aset of first-order differential equations.
The exact analytical solution to such equationsis usu-
aly impossible to find. Even numerical integration
often comes across difficulties that are due to the high
dimensionality of the system and the stiffness of the set
of differential equations. The latter can be dueto asig-
nificant scatter of the rate constants of steps. Therefore,
an important task is rearranging the model to exclude or
reduce the effect of the model properties mentioned
above. One of the methodsto reduce the dimensionality
of the model is to use the property of time separation
[1-4]. This property consists in the fact that the whole
timeinterval can be divided into subintervals, and only
apart of the complex mechanism is operative at each of
them. One of such methods is the method of pseudo-
steady-state concentrations [1, 2]. The method pro-
posed by Spivak and co-authors [3, 4] enables finding
the number and lengths of characteristic intervals for
any specific mechanism and the respective parts of the
mechanism that determine the main properties of the
system behavior at each interval. The goal of this work
isto refine the method for reducing the set of differen-
tial equations and extend its applicability range.

The mathematical model of achemical reaction that
occurs viathe steps

ia;xi Hiaj‘ixi, i=1..5S @D
i=1 i=1

(reversible steps are written as two nonreversible ones)
have the following form

X = ZWj(aJ'_i_a-j'.i)ﬂ (D
j

where the rates of stepsw, are determined according to
the mass action law:

w; = k; I_l X" ()
i=1

with the rate parameters (the rate constants of steps) k;,
the concentrations x; of species X;, and the stoi chiomet-

ric coefficients aj; . Let us assume that the number of

atoms of each type is conserved. Since each speciesis
included in at least one conservation law for atoms, the
concentrations of all species have some constant upper
limit %] < R. The main ideafor the improvement of the
method for reducing set (1) isto preserve the conserva-
tion laws. Thisideais based on the following reduc-
tion rule: the system changes only when the rate of
any step (2) reaches the significance threshold value €.
If the rateincreases and reaches this value, then the cor-
responding step is included in the mechanism. If the
rate decreases to the threshold value, then the corre-
sponding step is excluded. When this reduction method
isused, set (1) of differential equations remains chem-
ically sensible at each period of time, since it corre-
sponds to the initial mechanism with severa steps
excluded. The solutions to the set are constrained
because the conservation laws are determined by the
list of species and their chemical formulas and do not
changeif steps are removed or added.

Note that the reduction method as it was initially
formulated [3, 4] contained another reduction rule. It
was based on the comparison of the monomials of the
polynomial set of differential equations (1) rather than
reaction rates with the significance threshold value.
However, when monomials are excluded or returned to
the system, the chemical properties of system (1) are
lost. Thismay result in asubstantial changein the prop-
erties of the reduced system compared to the initial
model. For instance, reaction X — 2Y is character-
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ized by a monatonic decrease in the concentration of
reactant X to zero and an increase in the concentration
of product Y to a certain value. The mathematical
model of this reaction takes the following form:

Y(to) = Yo- )

For any positive value of the significance threshold €
and theinitial concentration of X, which meetsthe con-

X = —kx, y =2kx, X(tg) = X,

5K’ , thereduction method initsinitial formu-

lation resultsin an initial decrease in the concentration
of x to the value x, = €/k. The monomial kx is excluded
since it decreases and reaches the threshold value. The
monomia 2kx remains significant at the point of
switching to areduced system. After switching, sys-
tem (3) transformsto

d|t|onx0>

x=0, y= 2k, y(t) = yi.
Because the concentration of species X stops changing,
monomials kx and 2kx do not change and there are no
more switches. According to Egs. (4), the concentration
of Y infinitely increasesin contrast to the real situation.
The application of the improved reduction method to
model (3) results in the simultaneous elimination of
both monomials at the point of switching (because the
corresponding step is removed), and both concentra-
tions further remain constant. Therefore, the refined
method preserves the chemical sense of the model.
Note also that the deviation of the steady-state value
x; = g/k of the concentration of species X from zero
decreases with a decrease in the significance threshold
value.

X(t) = xy,

L et us estimate the accuracy of the improved reduc-
tion method or the error due to the replacement of the
solution vector x(t) of theinitial system by the solution
vector y;(t) of the reduced system depending on the sig-
nificance threshold value €. Supposet,, t;, t,, ... arethe
moments when the list of active steps changes (call
them switches). Intheinitial moment t, thislist can aso
be changed (if one or severa rates are lower than the
threshold value).

Thevectorsof solutionsto theinitial and reduced sys-
tems satisfy the sets of polynomia equationst=t,,_, and

t =t,, a each interval between consecutive switches x; =
ZW(X)(aJ. aj) and y = ZW(y)(a,. aj); the

sum over J, corresponds to significant steps (that is,
steps with rates higher than the significance threshold
valuesat theinterval t,,_, <t<t,) and stepsthat acquire
significance at t = t,,_,. Changes in the error A =

/ z (X =, )2 dueto the replacement of the exact solu-

tion by the reduced solution is determined by the
expression
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where the sum over J corresponds to steps that are
insignificant at the interval t,,_, <t <t and steps that
lose their significance at t = t,,_,. If M is the highest
molecularity of steps in the mechanism and K is the

maximal of al rate constants, then the derivative %X)\(I—‘
i

has an upper limit equa to L = KMRM-! & x| < R Then,

usng the mean vaue theorem w(x) — w(y) =

Zl %x] )% — ¥), where & is some point on the axis

that connects points x and y, the values of w(y) in the
sum over J_are not greater than the significance thresh-
old value wy(y) < €. Taking thisinto account, the error A
can be estimated by the differential inequality A' <

NnLMSA + /nMSe. The solution to thisinequality gives
us the following estimate of A:

£+ LJ/nA(t,,)
g+ LJ/nA(ty,_y)

Because A(t,) = 0, the use of expression (5) recurrently
leads us to the estimate of A at any moment of time
t>t,

In SNLMS(t,—tn_1)- 5)

nLMS(t -t;)

€

Thus, the error that appears when one replacesthe exact
system by areduced one is estimated by avaluethat is
alinear function of the significance threshold €. There-
fore, it can be made as small as desired by choosing an
appropriate value of € although the factor in this linear
function can be rather high in real examples. Obvi-
ously, further analysis would provide a more exact esti-
mate of the factor.

Let us consider examples that illustrate the
improved reduction method for specific reactions. The
five-step irreversible mechanism

1. X54>Xl7 2. Xl"XZ’
4. X3 4>X4,

3. X2 —— X3,
5. X, —= Xs

is characterized by an almost monotonic function of the
concentration on time for the following values of the
rate constants k; = 1, k, = 0.5, k; =2, k, =4, and ks =

3 57! and the initial condltlons X(0) = X,(0) = %3(0) =
x,(0) = 0, and X5(0) = 1 (Fig. 1a). Figure 1b illustrates
the dependence of the concentration x,(t) on time cal-
culated for € = 0.01. The same figure providesinforma-
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Fig. 1. Plots of xj(t) and w;(t) vs.time (i = 1, ..., 5) for scheme (I1): (a) x;j(t) is calculated using the exact model; (b) (1) x;(t)

and (1-5) w;(t) are calculated using the reduction method.
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Fig. 2. Plots of x;(t) and w,;(t) vs. time (i = 1, ..., 4) for scheme (I11): (a) x;(t) is calculated using the exact model; (b) (1')
Xi(t), (1-4) w;(t), and (5-8) w_j(t) are calculated using the reduction method.

tion on the reduction process in the form of the func-
tions of therates of stepsfrom scheme (I1) ontime. The
intervals of insignificance are given zero values,
whereas the significance intervals of steps 1-5 are
marked by values 0.10, 0.15, 0.20, 0.25, and 0.30,
respectively. As can be seen from Fig. 1b, these steps
start to work with some delay one after another. Thisis
explained by the fact that scheme (11) represent achain
mechanism. The difference between the exact and
reduced values of x,(t) changes from —0.00004 to
0.00019 at theinterval from0to 10 s; that is, it israther
small.

The four-step reversible mechanism
1.X, = Xg, 2.X, = Xy, 3.X, = Xy,

11T

4. X5 = X, o
is characterized by the damping oscillation dependence
of the concentrations on time at the values of rate con-
stants k; = 0.25 s'and k; = 0.01 s~! and the initial con-
ditions x,(0) = %,(0) = X;(0) =0 and x,(0) = 1 (Fig. 2a).
Figure 2b shows aplot of x,(t) vs. t for the reduced sys-
tem with € = 0.001, and the intervals of significance for
thesteps 1, -1, ..., 4, and -4 characterized by the values

0.05, 0.10, ..., 0.35, and 0.40, respectively. The reverse
stepsin mechanism (111) start to work with asignificant
delay. Thisisexplained by the small values of rate con-
stants. The difference of the exact and reduced solu-
tions x,(t) in the interval from 0 to 20 s changes from
—0.00015 to 0.00070.

The three-step scheme
1. X5 = Xq, 2.X; = Xy,

(Iv)
3. 2X3 + X2 — 3X3

is characterized by the oscillatory regime when the
rate constants take the values k; = 2.89, k ; = 0.01,
k, =0.034, k, =0.1, and ky = 2000 s~! and when the
initial conditions are x,(0) = 0.2, X,(0) = 0.8, X;(0) =0
(Fig. 3a). Figure 3b shows the curve x,(t) for the
reduced system when the significance threshold is
€ = 0.001. The significance intervals of steps 1, -1,
2, -2, and 3 are denoted by the values 0.1, 0.2, 0.3,
0.4, and 0.5. The second step in the reverse direction
is characterized by the rate k ,x, and has insignifi-
cance intervals not only during the initial period but
during the whole course of the reaction. This is
explained by the fact that a limit cycle, which
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Fig. 3. Plots of x(t) and w,;(t) vs. time (i = 1, 2, 3) for scheme (IV): (a) x;(t) is calculated using the exact model; (b) (1) x;(t),
(1-3) w;(t), and w_;(t) (4, 5) are calculated using the reduction method.

appears in this reaction, is characterized by the low
values of x,, and thereis an insignificanceinterval of
the second step in the reverse direction during each
period of oscillations. The difference between the
exact and reduced solutions x,(t) at the interval from
0 to 40 s is between —0.0078 and 0.0522 and is
higher than the error calculated for mechanisms (1)
and (I11). Thisis explained by the fact that scheme
(1V) is characterized by a more complex nonstation-
ary behavior than the above schemes. However,
analysis of inequality (6) shows that this error can
be decreased to any desired level by changing the
significance threshold.
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